On Totally Geodesic Foliations and Doubly Ruled Surfaces in a Compact Lie Group

نویسندگان

  • MARIUS MUNTEANU
  • KRISTOPHER TAPP
چکیده

For a Riemannian submersion from a simple compact Lie group with a bi-invariant metric, we prove the action of its holonomy group on the fibers is transitive. As a step towards classifying Riemannian submersions with totally geodesic fibers, we consider the parameterized surface induced by lifting a base geodesic to points along a geodesic in a fiber. Such a surface is “doubly ruled” (it is ruled by horizontal geodesics and also by vertical geodesics). Its characterizing properties allow us to define “doubly ruled parameterized surfaces” in any Riemannian manifold, independent of Riemannian submersions. We initiate a study of the doubly ruled parameterized surfaces in compact Lie groups and in other symmetric spaces by establishing several rigidity theorems and constructing examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Rigidity of Riemannian Foliations with Complex Leaves on Kähler Manifolds *

We study Riemannian foliations with complex leaves on Kähler manifolds. The tensor T , the obstruction to the foliation be totally geodesic, is interpreted as a holomorphic section of a certain vector bundle. This enables us to give classification results when the manifold is compact.

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

The length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces

We examine the relationship between the length spectrum and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold M . In particular we analyze the extent to which the geometry of M is determined by the closed geodesics coming from finite area totally geodesic surfaces. Using techniques from analytic number theory, we address the following problems: Is the commensurability class of...

متن کامل

Totally null surfaces in neutral Kähler 4-manifolds

We study the totally null surfaces of the neutral Kähler metric on certain 4-manifolds. The tangent spaces of totally null surfaces are either self-dual (α-planes) or anti-self-dual (β-planes) and so we consider α-surfaces and β-surfaces. The metric of the examples we study, which include the spaces of oriented geodesics of 3-manifolds of constant curvature, are anti-self-dual, and so it is wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010